z-logo
open-access-imgOpen Access
The Levels of Retinoic Acid-Inducible Gene I Are Regulated by Heat Shock Protein 90-α
Author(s) -
Tomoh Matsumiya,
Tadaatsu Imaizumi,
Hidemi Yoshida,
Kei Satoh,
Matthew K. Topham,
Diana M. Stafforini
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0802933
Subject(s) - retinoic acid , heat shock protein , gene , shock (circulatory) , microbiology and biotechnology , chemistry , biology , genetics , medicine
Retinoic acid-inducible gene I (RIG-I) is an intracellular pattern recognition receptor that plays important roles during innate immune responses to viral dsRNAs. The mechanisms and signaling molecules that participate in the downstream events that follow activation of RIG-I are incompletely characterized. In addition, the factors that define intracellular availability of RIG-I and determine its steady-state levels are only partially understood but are likely to play a major role during innate immune responses. It was recently reported that the antiviral activity of RIG-I is negatively regulated by specific E3 ubiquitin ligases, suggesting participation of the proteasome in the regulation of RIG-I levels. In this study, we used immunoprecipitation combined with mass spectrometry to identify RIG-I-interacting proteins and found that RIG-I forms part of a protein complex that includes heat shock protein 90-alpha (HSP90-alpha), a molecular chaperone. Biochemical studies using purified systems demonstrated that the association between RIG-I and HSP90-alpha is direct but does not involve participation of the CARD domain. Inhibition of HSP90 activity leads to the dissociation of the RIG-I-HSP90 complex, followed by ubiquitination and proteasomal degradation of RIG-I. In contrast, the levels of RIG-I mRNA are unaffected. Our studies also show that the ability of RIG-I to respond to stimulation with polyinosinic:polycytidylic acid is abolished when its interaction with HSP90 is inhibited. These novel findings point to HSP90-alpha as a chaperone that shields RIG-I from proteasomal degradation and modulates its activity. These studies identify a new mechanism whose dysregulation may seriously compromise innate antiviral responses in mammals.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom