z-logo
open-access-imgOpen Access
IL-27 Regulates Homeostasis of the Intestinal CD4+ Effector T Cell Pool and Limits Intestinal Inflammation in a Murine Model of Colitis
Author(s) -
Amy E. Troy,
Colby Zaph,
Yurong Du,
Betsy C. Taylor,
Katherine J. Guild,
Christopher A. Hunter,
Christiaan J. M. Saris,
David Artis
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0802918
Subject(s) - inflammation , biology , immunology , immune system , proinflammatory cytokine , innate lymphoid cell , cytokine , t cell , colitis , innate immune system , homeostasis , effector , intestinal mucosa , microbiology and biotechnology , medicine
IL-27 limits CD4(+) T(H)17 cell development in vitro and during inflammatory responses in the CNS. However, whether IL-27-IL-27R interactions regulate the homeostasis or function of CD4(+) T cell populations in the intestine is unknown. To test this, we examined CD4(+) T cell populations in the intestine of wild-type and IL-27R(-/-) mice. Naive IL-27R(-/-) mice exhibited a selective decrease in the frequency of IFN-gamma producing CD4(+) T(H)1 cells and an increase in the frequency of T(H)17 cells in gut-associated lymphoid tissues. Associated with elevated expression of IL-17A, IL-27R(-/-) mice exhibited earlier onset and significantly increased severity of clinical disease compared with wild-type controls in a murine model of intestinal inflammation. Rag(-/-)/IL-27R(-/-) mice were also more susceptible than Rag(-/-) mice to development of dextran sodium sulfate-induced intestinal inflammation, indicating an additional role for IL-27-IL-27R in the regulation of innate immune cell function. Consistent with this, IL-27 inhibited proinflammatory cytokine production by activated neutrophils. Collectively, these data identify a role for IL-27-IL-27R interaction in controlling the homeostasis of the intestinal T cell pool and in limiting intestinal inflammation through regulation of innate and adaptive immune cell function.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom