z-logo
open-access-imgOpen Access
STIM1-Independent T Cell Development and Effector Function In Vivo
Author(s) -
Niklas Beyersdorf,
Attila Braun,
Timo Vögtle,
Dávid Varga-Szabó,
Ronmy Rivera Galdos,
Stephan Kissler,
Thomas Kerkau,
Bernhard Nieswandt
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0802888
Subject(s) - stim1 , microbiology and biotechnology , t cell , adoptive cell transfer , biology , effector , immune system , foxp3 , stromal cell , immunology , cancer research , endoplasmic reticulum
Store-operated Ca(2+) entry (SOCE) is believed to be of pivotal importance in T cell physiology. To test this hypothesis, we generated mice constitutively lacking the SOCE-regulating Ca(2+) sensor stromal interaction molecule 1 (STIM1). In vitro analyses showed that SOCE and Ag receptor complex-triggered Ca(2+) flux into STIM1-deficient T cells is virtually abolished. In vivo, STIM1-deficient mice developed a lymphoproliferative disease despite normal thymic T cell maturation and normal frequencies of CD4(+)Foxp3(+) regulatory T cells. Unexpectedly, STIM1-deficient bone marrow chimeric mice mounted humoral immune responses after vaccination and STIM1-deficient T cells were capable of inducing acute graft-versus-host disease following adoptive transfer into allogeneic hosts. These results demonstrate that STIM1-dependent SOCE is crucial for homeostatic T cell proliferation, but of much lesser importance for thymic T cell differentiation or T cell effector functions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom