z-logo
open-access-imgOpen Access
Monocyte Chemoattractant Protein-1 (MCP-1), Not MCP-3, Is the Primary Chemokine Required for Monocyte Recruitment in Mouse Peritonitis Induced with Thioglycollate or Zymosan A
Author(s) -
Munehisa Takahashi,
Carole L. Galligan,
Lino Tessarollo,
Teizo Yoshimura
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0802812
Subject(s) - zymosan , monocyte , chemokine , ccl2 , ccr2 , knockout mouse , microbiology and biotechnology , gene , biology , inflammation , chemistry , immunology , in vitro , chemokine receptor , biochemistry
MCP-1/CCL2 plays a critical role in monocyte recruitment into sites of immune responses and cancer. However, the role of other MCPs remains unclear. In this study, we generated a novel MCP-1-deficient (designated as MCP-1(Delta/Delta)) mouse model by deleting a 2.3-kb DNA fragment from the mouse genome using the Cre/loxP system. MCP-1 was not produced by LPS-activated MCP-1(Delta/Delta) macrophages; however, the production of MCP-3, coded by the immediate downstream gene, was significantly increased. In contrast, macrophages from another mouse line with a neo-gene cassette in intron 2 produced a significantly lower level of MCP-1 and MCP-3. Decreased MCP-3 production was also detected in previously generated MCP-1-deficient mice in which a neo-gene cassette was inserted in exon 2 (designated as MCP-1 knockout (KO)). Altered MCP-1 and/or MCP-3 production was also observed in vivo in each mouse model in response to i.p. injection of thioglycolate or zymosan. The up- and down-regulation of MCP-3 production in MCP-1(Delta/Delta) and MCP-1 KO mice, respectively, provided us with a unique opportunity to evaluate the role for MCP-3. Despite the increased MCP-3 production in MCP-1(Delta/Delta) mice, thioglycolate- or zymosan-induced monocyte/macrophage accumulation was still reduced by approximately 50% compared with wild-type mice, similar to the reduction detected in MCP-1 KO mice. Thus, up-regulated MCP-3 production did not compensate for the loss of MCP-1, and MCP-3 appears to be a less effective mediator of monocyte recruitment than MCP-1. Our results also indicate the presence of other mediators regulating the recruitment of monocytes in these models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom