Intact Bacteria Inhibit the Induction of Humoral Immune Responses to Bacterial-Derived and Heterologous Soluble T Cell-Dependent Antigens
Author(s) -
Gouri Chattopadhyay,
Quanyi Chen,
Jesús Colino,
Andrew Lees,
Clifford M. Snapper
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0802615
Subject(s) - immunogen , immune system , heterologous , biology , microbiology and biotechnology , adjuvant , antigen , conjugate , streptococcus pneumoniae , bacteria , extracellular , antibody , immunology , antibiotics , biochemistry , monoclonal antibody , mathematical analysis , genetics , mathematics , gene
During infections with extracellular bacteria, such as Streptococcus pneumoniae (Pn), the immune system likely encounters bacterial components in soluble form, as well as those associated with the intact bacterium. The potential cross-regulatory effects on humoral immunity in response to these two forms of Ag are unknown. We thus investigated the immunologic consequences of coimmunization with intact Pn and soluble conjugates of Pn-derived proteins and polysaccharides (PS) as a model. Coimmunization of mice with Pn and conjugate resulted in marked inhibition of conjugate-induced PS-specific memory, as well as primary and memory anti-protein Ig responses. Inhibition occurred with unencapsulated Pn, encapsulated Pn expressing different capsular types of PS than that present in the conjugate, and with conjugate containing protein not expressed by Pn, but not with 1-microm latex beads in adjuvant. Inhibition was long-lasting and occurred only during the early phase of the immune response, but it was not associated with tolerance. Pn inhibited the trafficking of conjugate from the splenic marginal zone to the B cell follicle and T cell area, strongly suggesting a potential mechanism for inhibition. These data suggest that during infection, bacterial-associated Ags are the preferential immunogen for antibacterial Ig responses.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom