Influenza Virus and Poly(I:C) Inhibit MHC Class I-Restricted Presentation of Cell-Associated Antigens Derived from Infected Dead Cells Captured by Human Dendritic Cells
Author(s) -
Davor Frleta,
Chun I. Yu,
Eynav Klechevsky,
Anne-Laure Flamar,
Gérard Zurawski,
Jacques Banchereau,
Karolina Palucka
Publication year - 2009
Publication title -
the journal of immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.737
H-Index - 372
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.0801720
Subject(s) - virology , antigen presentation , mhc class i , mhc class ii , antigen , virus , biology , major histocompatibility complex , class (philosophy) , immunology , mhc restriction , antigen presenting cell , t cell , immune system , computer science , artificial intelligence
During viral infection, dendritic cells (DCs) capture infected cells and present viral Ags to CD8(+) T cells. However, activated DCs might potentially present cell-associated Ags derived from captured dead cells. In this study, we find that human DCs that captured dead cells containing the TLR3 agonist poly(I:C) produced cytokines and underwent maturation, but failed to elicit autologous CD8(+) T cell responses against Ags of dead cells. Accordingly, DCs that captured dead cells containing poly(I:C), or influenza virus, are unable to activate CD8(+) T cell clones specific to cell-associated Ags of captured dead cells. CD4(+) T cells are expanded with DCs that have captured poly(I:C)-containing dead cells, indicating the inhibition is specific for MHC class I-restricted cross-presentation. Furthermore, these DCs can expand naive allogeneic CD8(+) T cells. Finally, soluble or targeted Ag is presented when coloaded onto DCs that have captured poly(I:C)-containing dead cells, indicating the inhibition is specific for dead cell cargo that is accompanied by viral or poly(I:C) stimulus. Thus, DCs have a mechanism that prevents MHC class I-restricted cross-presentation of cell-associated Ag when they have captured dead infected cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom