z-logo
open-access-imgOpen Access
Development of Nucleic Acid Lateral Flow Immunoassay for Rapid and Accurate Detection of Chikungunya Virus in Indonesia
Author(s) -
Mandala Ajie,
Dyshelly Nurkartika Pascapurnama,
Susantina Prodjosoewojo,
Shinta Kusumawardani,
Hofiya Djauhari,
Sukwan Handali,
Bachti Alisjahbana,
Lidya Chaidir
Publication year - 2021
Publication title -
journal of microbiology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 64
eISSN - 1738-8872
pISSN - 1017-7825
DOI - 10.4014/jmb.2108.08025
Subject(s) - chikungunya , immunoassay , nucleic acid , virology , virus , alphavirus , biology , nucleic acid detection , chromatography , chemistry , antibody , biochemistry , genetics
Chikungunya fever is an arboviral disease caused by the Chikungunya virus (CHIKV). The disease has similar clinical manifestations with other acute febrile illnesses which complicates differential diagnosis in low-resource settings. We aimed to develop a rapid test for CHIKV detection based on the nucleic acid lateral flow immunoassay technology. The system consists of a primer set that recognizes the E1 region of the CHIKV genome and test strips in an enclosed cassette which are used to detect amplicons labeled with FITC/biotin. Amplification of the viral genome was done using open-source PCR, a low-cost open-source thermal cycler. Assay performance was evaluated using a panel of RNA isolated from patients' blood with confirmed CHIKV ( n = 8) and dengue virus ( n = 20) infection. The open-source PCR-NALFIA platform had a limit of detection of 10 RNA copies/ml. The assay had a sensitivity and specificity of 100% (95% CI: 67.56% - 100%) and 100% (95% CI: 83.89% - 100%), respectively, compared to reference standards of any positive virus culture on C6/36 cell lines and/or qRT-PCR. Further evaluation of its performance using a larger sample size may provide important data to extend its usefulness, especially its utilization in the peripheral healthcare facilities with scarce resources and outbreak situations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom