z-logo
open-access-imgOpen Access
Production of Polyhydroxyalkanoates (PHA) by Haloferax mediterranei from Food Waste Derived Nutrients for Biodegradable Plastic Applications
Author(s) -
Ke Wang,
Ruihong Zhang
Publication year - 2020
Publication title -
journal of microbiology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 64
eISSN - 1738-8872
pISSN - 1017-7825
DOI - 10.4014/jmb.2008.08057
Subject(s) - polyhydroxyalkanoates , propionate , raw material , biodegradable plastic , waste management , food waste , pulp and paper industry , food science , chemistry , biodegradable waste , bioplastic , biomass (ecology) , microbiology and biotechnology , organic chemistry , bacteria , biology , ecology , engineering , genetics
Polyhydroxyalkanoates (PHA) are a family of microbial polyesters that are used as biodegradable plastics in replacement of conventional plastics for various applications. However, the high production cost is the barrier for PHA market expansion. This study aimed to utilize food waste as low-cost feedstock to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by Haloferax mediterranei . The effects of acetate (Ac), propionate (Pr), butyrate (Bu), and the short-chain carboxylates derived from food waste were examined on the microbial growth and PHBV production. Results showed that a mixture of carboxylates provided a 55% higher PHBV yield than glucose. The food-waste-derived nutrients achieved the yields of 0.41 to 0.54 g PHBV/g Ac from initial loadings of 450 mg/l to 1,800 mg/l Ac of total carboxylates. And the consumption of individual carboxylate varied between different compositions of the carbon source. The present study demonstrates the potential of using food waste as feedstock to produce PHBV by Haloferax mediterranei , which can provide economic benefits to the current PHA industry. Meanwhile, it will also help promote organic waste reduction in landfills and waste management in general.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom