z-logo
open-access-imgOpen Access
Heterologous Expression of Recombinant Transglutaminase in Bacillus subtilis SCK6 with Optimized Signal Peptide and Codon, and Its Impact on Gelatin Properties
Author(s) -
Shiting Wang,
Zhigang Yang,
Zhenjiang Li,
Yongqiang Tian
Publication year - 2020
Publication title -
journal of microbiology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 64
eISSN - 1738-8872
pISSN - 1017-7825
DOI - 10.4014/jmb.2002.02049
Subject(s) - bacillus subtilis , gelatin , recombinant dna , signal peptide , tissue transglutaminase , chemistry , peptide , biochemistry , heterologous , extracellular , fermentation , enzyme , heterologous expression , food science , hydrolysate , strain (injury) , bacillaceae , bacteria , biology , gene , genetics , anatomy , hydrolysis
Microbial transglutaminases (MTGs) are widely used in the food industry. In this study, the MTG gene of Streptomyces sp. TYQ1024 was cloned and expressed in a food-grade bacterial strain, Bacillus subtilis SCK6. Extracellular activity of the MTG after codon and signal peptide (SP Ync M) optimization was 20 times that of the pre-optimized enzyme. After purification, the molecular weight of the MTG was 38 kDa and the specific activity was 63.75 U/mg. The optimal temperature and pH for the recombinant MTG activity were 50°C and 8.0, respectively. MTG activity increased 1.42- fold in the presence of β-ME and 1.6-fold in the presence of DTT. Moreover, 18% sodium chloride still resulted in 83% enzyme activity, which showed good salt tolerance. Cross-linking gelatin with the MTG increased the strength of gelatin 1.67 times and increased the thermal denaturation temperature from 61.8 to 75.8°C. The MTG also significantly increased the strength and thermal stability of gelatin. These characteristics demonstrated the huge commercial potential of MTG, such as for applications in salted protein foods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom