Inhibition of Herpes Simplex Viruses, Types 1 and 2, by Ginsenoside 20(S)-Rg3
Author(s) -
Stephen Wright,
Elliot Altman
Publication year - 2020
Publication title -
journal of microbiology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 64
eISSN - 1738-8872
pISSN - 1017-7825
DOI - 10.4014/jmb.1908.08047
Subject(s) - herpes simplex virus , ginseng , vero cell , ginsenoside , ic50 , virology , immune system , virus , biology , pharmacology , microbiology and biotechnology , medicine , in vitro , immunology , biochemistry , alternative medicine , pathology
Infections by herpes simplex viruses have an immense impact on humans, ranging from selflimiting, benign illness to serious, life-threatening diseases. While nucleoside analog drugs are available, resistance has been increasing and currently no vaccine exists. Ginsenosides derived from Panax ginseng have been documented to inhibit several viruses and bolster immune defenses. This study evaluated 12 of the most relevant ginsenosides from P. ginseng for toxicities and inhibition of herpes simplex viruses types 1 and 2 in Vero cells. The effects of test compounds and virus infection were determined using a PrestoBlue cell viability assay. Time course studies were also conducted to better understand at what points the virus life cycle was affected. Non-toxic concentrations of the ginsenosides were determined and ranged from 12.5 µM to greater than 100 µM. Ginsenoside 20(S)-Rg3 demonstrated the greatest inhibitory effect and was active against both HSV-1 and HSV-2 with an IC 50 of approximately 35 µM. The most dramatic inhibition-over 100% compared to controls-occurred when the virus was exposed to 20(S)-Rg3 for 4 h prior to being added to cells. 20(S)-Rg3 holds promise as a potential chemotherapeutic agent against herpes simplex viruses and, when used together with valacyclovir, may prevent increased resistance to drugs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom