z-logo
open-access-imgOpen Access
Mobile Applications for Diabetes Self-Care and Approach to Machine Learning
Author(s) -
Denis Cedeño-Moreno,
Miguel Vargas-Lombardo
Publication year - 2020
Publication title -
international journal of online and biomedical engineering (ijoe)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.184
H-Index - 8
ISSN - 2626-8493
DOI - 10.3991/ijoe.v16i08.13591
Subject(s) - mhealth , computer science , health care , artificial intelligence , class (philosophy) , mobile technology , disease , set (abstract data type) , machine learning , data science , medicine , mobile device , world wide web , pathology , economics , programming language , economic growth
Diabetes is a silent disease, the number of people who suffer from it increases daily, it is unfortunate that many young people develop this condition and do not know that they suffer from it. So much so that this disease is the fifth cause of death in Panama. Using software technologies applied to areas such as health every day is increasing. Scientific research in health areas, as well as the development of new technologies that involve smartphones and sensors, is making health self-care possible. Currently, interest in mobile health (mHealth) applications for disease self-care is growing. The innovation of technological tools associated with artificial intelligence is increasing every day. Among its most radical trends is machine learning, whose function is to develop techniques that allow computers to learn. This learning occurs through the data that can be provided to the algorithms responsible for categorizing. Therefore, this research aims to analyze mobile applications specifically those focused on diabetes, to propose an emerging systematic model of medical care for self-management of patients with diabetes and, finally, achieve a reliable data set with Panamanian patient data to apply machine-learning models and see how much we can help Panamanian doctors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom