Numerical study of secondary heteroclinic bifurcations near non-reversible homoclinic snaking
Author(s) -
Thorsten Rieß
Publication year - 2011
Publication title -
conference publications
Language(s) - English
Resource type - Book series
DOI - 10.3934/proc.2011.2011.1244
Subject(s) - homoclinic orbit , heteroclinic cycle , heteroclinic bifurcation , heteroclinic orbit , codimension , homoclinic bifurcation , periodic orbits , mathematics , bifurcation , mathematical analysis , physics , bifurcation theory , nonlinear system , quantum mechanics
We discuss the emergence of isolas of secondary heteroclinic bifurcations near a non-reversible homoclinic snaking curve in parameter space that is generated by a codimension-one equilibrium-to-periodic (EtoP) heteroclinic cycle. We use a numerical method based on Lin's method to compute and continue these secondary heteroclinic EtoP orbits for a well-known system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom