z-logo
open-access-imgOpen Access
Convexity and starshapedness of feasible sets in stationary flow networks
Author(s) -
Martin Gugat,
Rüdiger Schultz,
Michael Schuster
Publication year - 2020
Publication title -
networks and heterogeneous media
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.732
H-Index - 34
eISSN - 1556-181X
pISSN - 1556-1801
DOI - 10.3934/nhm.2020008
Subject(s) - convexity , flow (mathematics) , mathematics , mathematical optimization , mathematical analysis , computer science , geometry , economics , financial economics
In this paper, we consider a stationary model for the flow through a network. The flow is determined by the values at the boundary nodes of the network. We call these values the loads of the network. In the applications, the feasible loads must satisfy some box constraints. We analyze the structure of the set of feasible loads. Our analysis is motivated by gas pipeline flows, where the box constraints are pressure bounds. We present sufficient conditions that imply that the feasible set is star-shaped with respect to special points. Under stronger conditions, we prove the convexity of the set of feasible loads. All the results are given for passive networks with and without compressor stations. This analysis is motivated by the aim to use the spheric-radial decomposition for stochastic boundary data in this model. This paper can be used for simplifying the algorithmic use of the spheric-radial decomposition.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom