z-logo
open-access-imgOpen Access
Error bounds for Kalman filters on traffic networks
Author(s) -
Ye Sun,
Daniel B. Work
Publication year - 2018
Publication title -
networks and heterogeneous media
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.732
H-Index - 34
eISSN - 1556-181X
pISSN - 1556-1801
DOI - 10.3934/nhm.2018012
Subject(s) - unobservable , kalman filter , discretization , bounded function , computer science , observer (physics) , partial differential equation , control theory (sociology) , traffic flow (computer networking) , mathematics , extended kalman filter , microscopic traffic flow model , mathematical analysis , traffic generation model , physics , real time computing , artificial intelligence , econometrics , control (management) , computer security , quantum mechanics
This work analyzes the estimation performance of the Kalman filter (KF) on transportation networks with junctions. To facilitate the analysis, a hybrid linear model describing traffic dynamics on a network is derived. The model, referred to as the switching mode model for junctions, combines the discretized Lighthill-Whitham-Richards partial differential equation with a junction model. The system is shown to be unobservable under nearly all of the regimes of the model, motivating attention to the estimation error bounds in these modes. The evolution of the estimation error is investigated via exploring the interactions between the update scheme of the KF and the intrinsic physical properties embedded in the traffic model (e.g., conservation of vehicles and the flow-density relationship). It is shown that the state estimates of all the cells in the traffic network are ultimately bounded inside a physically meaningful interval, which cannot be achieved by an open-loop observer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom