Big Map R-CNN for object detection in large-scale remote sensing images
Author(s) -
Linfei Wang,
Dapeng Tao,
Ruonan Wang,
Ruxin Wang,
Hao Li
Publication year - 2019
Publication title -
mathematical foundations of computing
Language(s) - English
Resource type - Journals
ISSN - 2577-8838
DOI - 10.3934/mfc.2019019
Subject(s) - computer science , pixel , artificial intelligence , scale (ratio) , cluster analysis , object detection , big data , remote sensing , computer vision , object (grammar) , satellite imagery , pattern recognition (psychology) , satellite , data mining , geography , cartography , aerospace engineering , engineering
Detecting sparse and multi-sized objects in very high resolution (VHR) remote sensing images remains a significant challenge in satellite imagery applications and analytics. Difficulties include broad geographical scene distributions and high pixel counts in each image: a large-scale satellite image contains tens to hundreds of millions of pixels and dozens of complex backgrounds. Furthermore, the scale of the same category object can vary widely (e.g., ships can measure from several to thousands of pixels). To address these issues, here we propose the Big Map R-CNN method to improve object detection in VHR satellite imagery. Big Map R-CNN introduces mean shift clustering for quadric detecting based on the existing Mask R-CNN architecture. Big Map R-CNN considers four main aspects: 1) big map cropping to generate small size sub-images; 2) detecting these sub-images using the typical Mask R-CNN network; 3) screening out fragmented low-confidence targets and collecting uncertain image regions by clustering; 4) quadric detecting to generate prediction boxes. We also introduce a new large-scale and VHR remote sensing imagery dataset containing two categories (RSI LS-VHR-2) for detection performance verification. Comprehensive evaluations on RSI LS-VHR-2 dataset demonstrate the effectiveness of the proposed Big Map R-CNN algorithm for object detection in large-scale remote sensing images.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom