SEMANTIC-RTAB-MAP (SRM): A semantic SLAM system with CNNs on depth images
Author(s) -
Mingyuan Mao,
Hewei Zhang,
Simeng Li,
Baochang Zhang
Publication year - 2019
Publication title -
mathematical foundations of computing
Language(s) - English
Resource type - Journals
ISSN - 2577-8838
DOI - 10.3934/mfc.2019003
Subject(s) - artificial intelligence , simultaneous localization and mapping , computer science , computer vision , depth map , point cloud , semantic mapping , rgb color model , deep learning , monocular , image (mathematics) , robot , mobile robot
SLAM (simultaneous localization and mapping) system can be implemented based on monocular, RGB-D and stereo cameras. RTAB-MAP is a SLAM system, which can build dense 3D map. In this paper, we present a novel method named SEMANTIC-RTAB-MAP (SRM) to implement a semantic SLAM system based on RTAB-MAP and deep learning. We use YOLOv2 network to detect target objects in 2D images, and then use depth information for precise localization of the targets and finally add semantic information into 3D point clouds. We apply SRM in different scenes, and the results show its higher running speed and accuracy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom