z-logo
open-access-imgOpen Access
<i>L</i>(2, 1)-labeling of the Cartesian and strong product of two directed cycles
Author(s) -
Zehui Shao,
Huiqin Jiang,
Aleksander Vesel
Publication year - 2018
Publication title -
mathematical foundations of computing
Language(s) - English
Resource type - Journals
ISSN - 2577-8838
DOI - 10.3934/mfc.2018003
Subject(s) - cartesian product , combinatorics , graph , product (mathematics) , physics , function (biology) , mathematics , geometry , evolutionary biology , biology
The frequency assignment problem (FAP) is the assignment of frequencies to television and radio transmitters subject to restrictions imposed by the distance between transmitters. One of the graph theoretical models of FAP which is well elaborated is the concept of distance constrained labeling of graphs. Let \begin{document}$G = (V, E)$\end{document} be a graph. For two vertices \begin{document}$u$\end{document} and \begin{document}$v$\end{document} of \begin{document}$G$\end{document} , we denote \begin{document}$d(u, v)$\end{document} the distance between \begin{document}$u$\end{document} and \begin{document}$v$\end{document} . An \begin{document}$L(2, 1)$\end{document} -labeling for \begin{document}$G$\end{document} is a function \begin{document}$f: V → \{0, 1, ···\}$\end{document} such that \begin{document}$|f(u)-f(v)| ≥ 1$\end{document} if \begin{document}$d(u, v) = 2$\end{document} and \begin{document}$|f(u)-f(v)| ≥ 2$\end{document} if \begin{document}$d(u, v) = 1$\end{document} . The span of \begin{document}$f$\end{document} is the difference between the largest and the smallest number of \begin{document}$f(V)$\end{document} . The \begin{document}$λ$\end{document} -number for \begin{document}$G$\end{document} , denoted by \begin{document}$λ(G)$\end{document} , is the minimum span over all \begin{document}$L(2, 1)$\end{document} -labelings of \begin{document}$G$\end{document} . In this paper, we study the \begin{document}$λ$\end{document} -number of the Cartesian and strong product of two directed cycles. We show that for \begin{document}$m, n ≥ 4$\end{document} the \begin{document}$λ$\end{document} -number of \begin{document}$\overrightarrow{C_m} \Box \overrightarrow{C_n}$\end{document} is between 4 and 5. We also establish the \begin{document}$λ$\end{document} -number of \begin{document}$\overrightarrow{{{C}_{m}}}\boxtimes \overrightarrow{{{C}_{n}}}$\end{document} for \begin{document}$m ≤ 10$\end{document} and prove that the \begin{document}$λ$\end{document} -number of the strong product of cycles \begin{document}$\overrightarrow{{{C}_{m}}}\boxtimes \overrightarrow{{{C}_{n}}}$\end{document} is between 6 and 8 for \begin{document}$m, n ≥ 48$\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom