z-logo
open-access-imgOpen Access
Basic stochastic model for tumor virotherapy
Author(s) -
Tuan Anh Phan,
Jianjun Paul Tian
Publication year - 2020
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2020236
Subject(s) - ergodic theory , stochastic differential equation , mathematics , epidemic model , statistical physics , basic reproduction number , virotherapy , stochastic process , computer science , oncolytic virus , stochastic modelling , variance (accounting) , mathematical optimization , tumor cells , statistics , physics , biology , mathematical analysis , economics , population , demography , cancer research , sociology , accounting
The complexity of oncolytic virotherapy arises from many factors. In this study, we incorporate environmental noise and stochastic effects to our basic deterministic model and propose a stochastic model for viral therapy in terms of Ito stochastic differential equations. We conduct a detailed analysis of the model using boundary methods. We find two combined parameters, one describes possibilities of eradicating tumors and one is an increasing function of the viral burst size, which serve as thresholds to classify asymptotical dynamics of the model solution paths. We show there are three ergodic invariant probability measures which correspond to equilibrium states of the deterministic model, and extra possibility to eradicate tumor due to strong variance of tumor growth rate and medium viral burst size. Numerical analysis demonstrates several typical solution paths with biological explanations. In addition, we provide some medical interpretations and implications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom