Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks
Author(s) -
Haijun Hu,
Xupu Yuan,
Lihong Huang,
Chuangxia Huang
Publication year - 2019
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2019286
Subject(s) - correctness , lyapunov function , basic reproduction number , mathematics , demographics , stability (learning theory) , stability theory , computer science , mathematical economics , statistical physics , demography , physics , algorithm , sociology , population , quantum mechanics , nonlinear system , machine learning
In this paper, by taking full consideration of demographics, transfer from infectious to sus-ceptible and contact heterogeneity of the individuals, we construct an improved Susceptible-Infected-Removed-Susceptible (SIRS) epidemic model on complex heterogeneous networks. Using the next generation matrix method, we obtain the basic reproduction number $\mathcal{R}_0$ which is a critical value and used to measure the dynamics of epidemic diseases. More specifically, if $\mathcal{R}_0$ < 1, then the disease-free equilibrium is globally asymptotically stable; if $\mathcal{R}_0$ > 1, then there exists a unique endemic equilib-rium and the permanence of the disease is shown in detail. By constructing an appropriate Lyapunov function, the global stability of the endemic equilibrium is proved as well under some conditions. Moreover, the effects of three major immunization strategies are investigated. Finally, some numerical simulations are carried out to demonstrate the correctness and validness of the theoretical results.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom