z-logo
open-access-imgOpen Access
A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing
Author(s) -
Paulo Amorim,
Bruno Telch,
Luis Miguel Villada
Publication year - 2019
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2019257
Subject(s) - predator , predation , pursuit evasion , reaction–diffusion system , mathematics , diffusion , taxis , statistical physics , mathematical analysis , physics , mathematical optimization , ecology , biology , thermodynamics , botany
In this paper, we propose and analyze a reaction-diffusion model for predator-prey interaction, featuring both prey and predator taxis mediated by nonlocal sensing. Both predator and prey densities are governed by parabolic equations. The prey and predator detect each other indirectly by means of odor or visibility fields, modeled by elliptic equations. We provide uniform estimates in Lebesgue spaces which lead to boundedness and the global well-posedness for the system. Numerical experiments are presented and discussed, allowing us to showcase the dynamical properties of the solutions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom