z-logo
open-access-imgOpen Access
Mathematical analysis on deterministic and stochastic lake ecosystem models
Author(s) -
Zhiwei Huang,
Gang Huang
Publication year - 2019
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2019237
Subject(s) - ergodic theory , lyapunov function , ecosystem , zooplankton , statistical physics , population , invariance principle , plankton , stochastic modelling , ecology , stochastic process , mathematics , physics , statistics , biology , mathematical analysis , linguistics , philosophy , demography , quantum mechanics , nonlinear system , sociology
In this paper, we propose and study the deterministic and stochastic lake ecosystem models to investigate the impact of terrestrial organic matter upon persistence of the plankton populations. By constructing Lyapunov function and using the LaSalle's Invariance Principle, we establish global properties of the deterministic model. The dynamical behavior of solutions fits well with some experimental results. It is concluded that the terrestrial organic matter plays an important role in influencing interactions between phytoplankton and zooplankton. Based on the fluctuations of lake ecosystem, we further develop a stochastically perturbed model. Theoretic analysis implies that the stochastic model exists a stationary distribution which is ergodic. The key point of our analysis is to enhance our knowledge of the factors governing the dynamics of plankton population models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom