z-logo
open-access-imgOpen Access
A video watermark algorithm based on tensor decomposition
Author(s) -
Shanqing Zhang,
Xiaoyun Guo,
Xianghua Xu,
Li Li,
ChinChen Chang
Publication year - 2019
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2019172
Subject(s) - watermark , tucker decomposition , computer vision , robustness (evolution) , digital watermarking , artificial intelligence , tensor (intrinsic definition) , computer science , grayscale , tensor decomposition , embedding , algorithm , redundancy (engineering) , mathematics , image (mathematics) , geometry , biochemistry , chemistry , gene , operating system
Since most of the previous video watermark algorithms regard a video as a series of consecutive images, the embedding and extraction of watermark are performed on these images, and the correlation and redundancy among frames of a video are not considered. Such algorithms are weak in protecting against frame attacks. In order to improve the robustness, we take into consideration the correlation and redundancy among the frames of a video to propose a blind video watermark algorithm based on tensor decomposition. First, a grayscale video is represented as a 3-order tensor, and the core tensor is obtained by tensor decomposition. Second, the watermark embedding position is selected based on the stability of the maximum value in the core tensor because the core tensor represents the main energy of a video. Then, the watermark is embedded by quantifying the maximum value in the core tensor. Finally, the watermark is uniformly distributed across frames of a video by inverse tensor decomposition. The experiments show that our algorithm based on tensor decomposition has better imperceptibility and robustness against common video attacks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom