An exact approach to calibrating infectious disease models to surveillance data: The case of HIV and HSV-2
Author(s) -
David Gerberry
Publication year - 2017
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2018007
Subject(s) - robustness (evolution) , infectious disease (medical specialty) , computer science , human immunodeficiency virus (hiv) , calibration , data mining , disease , statistics , mathematics , medicine , virology , biochemistry , pathology , gene , chemistry
When mathematical models of infectious diseases are used to inform health policy, an important first step is often to calibrate a model to disease surveillance data for a specific setting (or multiple settings). It is increasingly common to also perform sensitivity analyses to demonstrate the robustness, or lack thereof, of the modeling results. Doing so requires the modeler to find multiple parameter sets for which the model produces behavior that is consistent with the surveillance data. While frequently overlooked, the calibration process is nontrivial at best and can be inefficient, poorly communicated and a major hurdle to the overall reproducibility of modeling results. In this work, we describe a general approach to calibrating infectious disease models to surveillance data. The technique is able to match surveillance data to high accuracy in a very efficient manner as it is based on the Newton-Raphson method for solving nonlinear systems. To demonstrate its robustness, we use the calibration technique on multiple models for the interacting dynamics of HIV and HSV-2.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom