z-logo
open-access-imgOpen Access
On the usefulness of set-membership estimation in the epidemiology of infectious diseases
Author(s) -
Andreas Widder
Publication year - 2017
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2018006
Subject(s) - estimation , infectious disease (medical specialty) , ebola virus , outbreak , epidemiology , mathematical modelling of infectious disease , set (abstract data type) , population , data set , computer science , econometrics , confidence interval , disease , statistics , mathematics , data mining , medicine , virology , environmental health , engineering , pathology , systems engineering , programming language
We present a method, known in control theory, to give set-membership estimates for the states of a population in which an infectious disease is spreading. An estimation is reasonable due to the fact that the parameters of the equations describing the dynamics of the disease are not known with certainty. We discuss the properties of the resulting estimations. These include the possibility to determine best- or worst-case-scenarios and identify under which circumstances they occur, as well as a method to calculate confidence intervals for disease trajectories under sparse data. We give numerical examples of the technique using data from the 2014 outbreak of the Ebola virus in Africa. We conclude that the method presented here can be used to extract additional information from epidemiological data.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom