z-logo
open-access-imgOpen Access
Blood coagulation dynamics: mathematical modeling and stability results
Author(s) -
Adélia Sequeira,
Rafael F. Santos,
Tomáš Bodnár
Publication year - 2011
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2011.8.425
Subject(s) - coagulation , fibrinolysis , mathematical model , coagulation cascade , mechanics , factor xii , stability (learning theory) , cascade , biological system , chemistry , platelet , biophysics , mathematics , computer science , immunology , physics , biology , medicine , chromatography , thrombin , statistics , machine learning
The hemostatic system is a highly complex multicomponent biosystem that under normal physiologic conditions maintains the fluidity of blood. Coagulation is initiated in response to endothelial surface vascular injury or certain biochemical stimuli, by the exposure of plasma to Tissue Factor (TF), that activates platelets and the coagulation cascade, inducing clot formation, growth and lysis. In recent years considerable advances have contributed to understand this highly complex process and some mathematical and numerical models have been developed. However, mathematical models that are both rigorous and comprehensive in terms of meaningful experimental data, are not available yet. In this paper a mathematical model of coagulation and fibrinolysis in flowing blood that integrates biochemical, physiologic and rheological factors, is revisited. Three-dimensional numerical simulations are performed in an idealized stenosed blood vessel where clot formation and growth are initialized through appropriate boundary conditions on a prescribed region of the vessel wall. Stability results are obtained for a simplified version of the clot model in quiescent plasma, involving some of the most relevant enzymatic reactions that follow Michaelis-Menten kinetics, and having a continuum of equilibria.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom