z-logo
open-access-imgOpen Access
<em>L<sub>p</sub></em>-solutions of the Navier-Stokes equation with fractional Brownian noise
Author(s) -
Benedetta Ferrario,
Christian Olivera
Publication year - 2018
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2018.4.539
Subject(s) - bounded function , uniqueness , domain (mathematical analysis) , mathematics , brownian noise , noise (video) , fractional brownian motion , brownian motion , mathematical analysis , navier–stokes equations , physics , white noise , computer science , thermodynamics , compressibility , statistics , artificial intelligence , image (mathematics)
We study the Navier-Stokes equations on a smooth bounded domain $D\subset \mathbb R^d$ ($d=2$ or 3), under the effect of an additive fractional Brownian noise. We show local existence and uniqueness of a mild $L^p$-solution for $p>d$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom