<em>L<sub>p</sub></em>-solutions of the Navier-Stokes equation with fractional Brownian noise
Author(s) -
Benedetta Ferrario,
Christian Olivera
Publication year - 2018
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2018.4.539
Subject(s) - bounded function , uniqueness , domain (mathematical analysis) , mathematics , brownian noise , noise (video) , fractional brownian motion , brownian motion , mathematical analysis , navier–stokes equations , physics , white noise , computer science , thermodynamics , compressibility , statistics , artificial intelligence , image (mathematics)
We study the Navier-Stokes equations on a smooth bounded domain $D\subset \mathbb R^d$ ($d=2$ or 3), under the effect of an additive fractional Brownian noise. We show local existence and uniqueness of a mild $L^p$-solution for $p>d$.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom