A proximal ADMM with the Broyden family for convex optimization problems
Author(s) -
Yan Gu,
Nobuo Yamashita
Publication year - 2020
Publication title -
journal of industrial and management optimization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.325
H-Index - 32
eISSN - 1553-166X
pISSN - 1547-5816
DOI - 10.3934/jimo.2020091
Subject(s) - regular polygon , convex optimization , mathematical optimization , optimization problem , computer science , mathematics , geometry
Alternating direction methods of multipliers (ADMM) have been well studied and effectively used in various application fields. The classical ADMM must solve two subproblems exactly at each iteration. To overcome the difficulty of computing the exact solution of the subproblems, some proximal terms are added to the subproblems. Recently, {{a special proximal ADMM has been studied}} whose regularized matrix in the proximal term is generated by the BFGS update (or limited memory BFGS) at every iteration for a structured quadratic optimization problem. {{The numerical experiments also showed}} that the numbers of iterations were almost same as those by the exact ADMM. In this paper, we propose such a proximal ADMM for more general convex optimization problems, and extend the proximal term by the Broyden family update. We also show the convergence of the proposed method under standard assumptions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom