Asset liability management for an ordinary insurance system with proportional reinsurance in a CIR stochastic interest rate and Heston stochastic volatility framework
Author(s) -
Yan Zhang,
Yonghong Wu,
Benchawan Wiwatanapataphee,
Francisca Angkola
Publication year - 2018
Publication title -
journal of industrial and management optimization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.325
H-Index - 32
eISSN - 1553-166X
pISSN - 1547-5816
DOI - 10.3934/jimo.2018141
Subject(s) - reinsurance , exponential utility , stochastic control , hamilton–jacobi–bellman equation , stochastic volatility , economics , stochastic differential equation , actuarial science , risk aversion (psychology) , expected utility hypothesis , volatility (finance) , econometrics , mathematical economics , mathematics , mathematical optimization , bellman equation , optimal control
This paper investigates the asset liability management problem for an ordinary insurance system incorporating the standard concept of proportional reinsurance coverage in a stochastic interest rate and stochastic volatility framework. The goal of the insurer is to maximize the expectation of the constant relative risk aversion (CRRA) of the terminal value of the wealth, while the goal of the reinsurer is to maximize the expected exponential utility (CARA) of the terminal wealth held by the reinsurer. We assume that the financial market consists of risk-free assets and risky assets, and both the insurer and the reinsurer invest on one risk-free asset and one risky asset. By using the stochastic optimal control method, analytical expressions are derived for the optimal reinsurance control strategy and the optimal investment strategies for both the insurer and the reinsurer in terms of the solutions to the underlying Hamilton-Jacobi-Bellman equations and stochastic differential equations for the wealths. Subsequently, a semi-analytical method has been developed to solve the Hamilton-Jacobi-Bellman equation. Finally, we present numerical examples to illustrate the theoretical results obtained in this paper, followed by sensitivity tests to investigate the impact of reinsurance, risk aversion, and the key parameters on the optimal strategies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom