z-logo
open-access-imgOpen Access
On the sensitivity of desirability functions for multiresponse optimization
Author(s) -
Caglar S. Aksezer
Publication year - 2008
Publication title -
journal of industrial and management optimization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.325
H-Index - 32
eISSN - 1553-166X
pISSN - 1547-5816
DOI - 10.3934/jimo.2008.4.685
Subject(s) - sensitivity (control systems) , set (abstract data type) , pareto principle , computer science , mathematical optimization , popularity , software , mathematics , engineering , electronic engineering , psychology , social psychology , programming language
Desirability functions have been one of the most important multiresponse optimization technique since the early eighties. Main reasons for this popularity might be counted as the convenience of the implementation of the method and it's availability in many experimental design software packages. Technique itself involves somehow subjective parameters such as the importance coefficients between response characteristics that are used to calculate overall desirability, weights used in determining the shape of each individual response and the size of the specification band of the response. However, the impact of these sensitive parameters on the solution set is mostly uninvestigated. This paper proposes a procedure to analyze the sensitivity of the important characteristic parameters of desirability functions and their impact on pareto-optimal solution set. The proposed procedure uses the experimental design tools on the solution space and estimates a prediction equation on the overall desirability to identify the sensitive parameters. For illustration, a classical desirability example is selected from the literature and results are given along with the discussion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom