z-logo
open-access-imgOpen Access
A derivative-free method for linearly constrained nonsmooth optimization
Author(s) -
Adil Bagirov,
Moumita Ghosh,
Dean Webb
Publication year - 2006
Publication title -
journal of industrial and management optimization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.325
H-Index - 32
eISSN - 1553-166X
pISSN - 1547-5816
DOI - 10.3934/jimo.2006.2.319
Subject(s) - lipschitz continuity , mathematics , computation , mathematical optimization , constrained optimization , optimization problem , derivative free optimization , class (philosophy) , function (biology) , continuous optimization , computer science , algorithm , multi swarm optimization , mathematical analysis , artificial intelligence , evolutionary biology , biology
This paper develops a new derivative-free method for solving linearly constrained nonsmooth optimization problems. The objective functions in these problems are, in general, non-regular locally Lipschitz continuous function. The computation of generalized subgradients of such functions is difficult task. In this paper we suggest an algorithm for the computation of subgradients of a broad class of non-regular locally continuous Lipschitz functions. This algorithm is based on the notion of a discrete gradient. An algorithm for solving linearly constrained nonsmooth optimization problems based on discrete gradients is developed. We report preliminary results of numerical experiments. These results demonstrate that the proposed algorithm is efficient for solving linearly constrained nonsmooth optimization problems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom