z-logo
open-access-imgOpen Access
Kirchhoff's equations of motion via a constrained Zakharov system
Author(s) -
Banavara N. Shashikanth
Publication year - 2016
Publication title -
the journal of geometric mechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.511
H-Index - 17
eISSN - 1941-4897
pISSN - 1941-4889
DOI - 10.3934/jgm.2016016
Subject(s) - lagrange multiplier , equations of motion , classical mechanics , buoyancy , perfect fluid , mathematics , constraint algorithm , constraint (computer aided design) , mathematical analysis , physics , hamiltonian (control theory) , mechanics , geometry , mathematical optimization
The Kirchhoff problem for a neutrally buoyant rigid body dynamically interacting with an ideal fluid is considered. Instead of the standard Kirchhoff equations, equations of motion in which the pressure terms appear explicitly are considered. These equations are shown to satisfy a Hamiltonian constraint formalism, with the pressure playing the role of the Lagrange multiplier. The constraint is imposed on the shape of a compact fluid surface whose dynamics is governed by the canonical variables introduced by Zakharov for a free-surface. It is also shown that the assumption of neutral buoyancy can be relaxed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom