Reconstructing functions from random samples
Author(s) -
Steve Ferry,
Konstantin Mischaikow,
Vidit Nanda
Publication year - 2014
Publication title -
journal of computational dynamics
Language(s) - English
Resource type - Journals
eISSN - 2158-2505
pISSN - 2158-2491
DOI - 10.3934/jcd.2014.1.233
Subject(s) - mathematics , homotopy , bounded function , submanifold , domain (mathematical analysis) , euclidean space , simplicial complex , riemannian manifold , pure mathematics , manifold (fluid mechanics) , range (aeronautics) , mathematical analysis , mechanical engineering , materials science , engineering , composite material
From a sufficiently large point sample lying on a compact Riemannian submanifold of Euclidean space, one can construct a simplicial complex which is homotopy-equivalent to that manifold with high confidence. We describe a corresponding result for a Lipschitz-continuous function between two such manifolds. That is, we outline the construction of a simplicial map which recovers the induced maps on homotopy and homology groups with high confidence using only finite sampled data from the domain and range, as well as knowledge of the image of every point sampled from the domain. We provide explicit bounds on the size of the point samples required for such reconstruction in terms of intrinsic properties of the domain, the co-domain and the function. This reconstruction is robust to certain types of bounded sampling and evaluation noise.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom