z-logo
open-access-imgOpen Access
Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model
Author(s) -
Ferenc A. Bartha,
Ábel Garab
Publication year - 2014
Publication title -
journal of computational dynamics
Language(s) - English
Resource type - Journals
eISSN - 2158-2505
pISSN - 2158-2491
DOI - 10.3934/jcd.2014.1.213
Subject(s) - bounded function , mathematics , stability (learning theory) , function (biology) , combinatorics , exponential stability , mathematical analysis , discrete mathematics , pure mathematics , physics , nonlinear system , computer science , quantum mechanics , evolutionary biology , machine learning , biology
We consider the global asymptotic stability of the trivial fixed point of the difference equation $x_{n+1}=m x_n-\alpha \varphi(x_{n-1})$, where $(\alpha,m) \in \mathbb{R}^2$ and $\varphi$ is a real function satisfying the discrete Yorke condition: $\min\{0,x\} \leq \varphi(x) \leq \max\{0,x\}$ for all $x\in \mathbb{R}$. If $\varphi$ is bounded then $(\alpha,m) \in [|m|-1,1] \times [-1,1]$, $(\alpha,m) \neq (0,-1), (0,1)$ is necessary for the global stability of $0$. We prove that if $\varphi(x) \equiv \tanh(x)$, then this condition is sufficient as well.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom