Recovering low-rank matrices from binary measurements
Author(s) -
Simon Foucart,
Richard G. Lynch
Publication year - 2019
Publication title -
inverse problems and imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.755
H-Index - 40
eISSN - 1930-8345
pISSN - 1930-8337
DOI - 10.3934/ipi.2019032
Subject(s) - binary number , rank (graph theory) , mathematics , restricted isometry property , gaussian , singular value , algorithm , combinatorics , compressed sensing , physics , eigenvalues and eigenvectors , arithmetic , quantum mechanics
This article studies the approximate recovery of low-rank matrices acquired through binary measurements. Two types of recovery algorithms are considered, one based on hard singular value thresholding and the other one based on semidefinite programming. In case no thresholds are introduced before binary quantization, it is first shown that the direction of the low-rank matrices can be well approximated. Then, in case nonadaptive thresholds are incorporated, it is shown that both the direction and the magnitude can be well approximated. Finally, by allowing the thresholds to be chosen adaptively, we exhibit a recovery procedure for which low-rank matrices are fully approximated with error decaying exponentially with the number of binary measurements. In all cases, the procedures are robust to prequantization error. The underlying arguments are essentially deterministic: they rely only on an unusual restricted isometry property of the measurement process, which is established once and for all for Gaussian measurement processes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom