Nomonotone spectral gradient method for sparse recovery
Author(s) -
Donghui Li,
Zixin Chen,
Wanyou Cheng
Publication year - 2015
Publication title -
inverse problems and imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.755
H-Index - 40
eISSN - 1930-8345
pISSN - 1930-8337
DOI - 10.3934/ipi.2015.9.815
Subject(s) - hessian matrix , line search , mathematics , diagonal , convex function , convergence (economics) , term (time) , rate of convergence , quadratic equation , regular polygon , mathematical optimization , combinatorics , computer science , key (lock) , physics , geometry , computer security , economics , economic growth , quantum mechanics , radius
In the paper, we present an algorithm framework for the more general problem of minimizing the sum $f(x)+\psi(x)$, where $f$ is smooth and $\psi$ is convex, but possible nonsmooth. At each step, the search direction of the algorithm is obtained by solving an optimization problem involving a quadratic term with diagonal Hessian and Barzilai-Borwein steplength plus $ \psi(x)$. The nonmonotone strategy is combined with -Borwein steplength to accelerate the convergence process. The method with the nomonotone line search techniques is showed to be globally convergent. In particular, if $f$ is convex, we show that the method shares a sublinear global rate of convergence. Moreover, if $f$ is strongly convex, we prove that the method converges R-linearly. Numerical experiments with compressive sense problems show that our approach is competitive with several known methods for some standard $l_2-l_1$ problems.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom