Geometric reconstruction in bioluminescence tomography
Author(s) -
Tim Kreutzmann,
Andreas Rieder
Publication year - 2014
Publication title -
inverse problems and imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.755
H-Index - 40
eISSN - 1930-8345
pISSN - 1930-8337
DOI - 10.3934/ipi.2014.8.173
Subject(s) - tikhonov regularization , inverse problem , regularization (linguistics) , uniqueness , mathematics , nonlinear system , well posed problem , mathematical analysis , domain (mathematical analysis) , minification , tomography , computer science , mathematical optimization , physics , artificial intelligence , quantum mechanics , optics
In bioluminescence tomography the location as well as the radiation intensity of a photon source (marked cell clusters) inside an organism have to be determined given the outside photon count. This inverse source problem is ill-posed: it suffers not only from strong instability but also from non-uniqueness. To cope with these difficulties the source is modeled as a linear combination of indicator functions of measurable domains leading to a nonlinear operator equation. The solution process is stabilized by a Tikhonov like functional which penalizes the perimeter of the domains. For the resulting minimization problem existence of a minimizer, stability, and regularization property are shown. Moreover, an approximate variational principle is developed based on the calculated domain derivatives which states that there exist smooth almost stationary points of the Tikhonov like functional near to any of its minimizers. This is a crucial property from a numerical point of view as it allows to approximate the searched-for domain by smooth domains. Based on the theoretical findings numerical schemes are proposed and tested for star-shaped sources in 2D: computational experiments illustrate performance and limitations of the considered approach.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom