z-logo
open-access-imgOpen Access
Inverse diffusion problems with redundant internal information
Author(s) -
Guillaume Bal,
François Monard
Publication year - 2012
Publication title -
inverse problems and imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.755
H-Index - 40
eISSN - 1930-8345
pISSN - 1930-8337
DOI - 10.3934/ipi.2012.6.289
Subject(s) - nabla symbol , electrical impedance tomography , scalar (mathematics) , mathematical analysis , inverse problem , physics , sigma , domain (mathematical analysis) , inverse , tomography , mathematics , geometry , omega , quantum mechanics , optics
This paper concerns the reconstruction of a scalar diffusion coefficient $\sigma(x)$ from redundant functionals of the form $H_i(x)=\sigma^{2\alpha}(x)|\nabla u_i|^2(x)$ where $\alpha\in\mathbb{R}$ and $u_i$ is a solution of the elliptic problem $\nabla\cdot \sigma \nabla u_i=0$ for $1\leq i\leq I$. The case $\alpha=\frac12$ is used to model measurements obtained from modulating a domain of interest by ultrasound and finds applications in ultrasound modulated electrical impedance tomography (UMEIT), ultrasound modulated optical tomography (UMOT) as well as impedance acoustic computerized tomography (ImpACT). The case $\alpha=1$ finds applications in Magnetic Resonance Electrical Impedance Tomography (MREIT). We present two explicit reconstruction procedures of $\sigma$ for appropriate choices of $I$ and of traces of $u_i$ at the boundary of a domain of interest. The first procedure involves the solution of an over-determined system of ordinary differential equations and generalizes to the multi-dimensional case and to (almost) arbitrary values of $\alpha$ the results obtained in two and three dimensions in [10] and [5], respectively, in the case $\alpha=\frac12$. The second procedure consists of solving a system of linear elliptic equations, which we can prove admits a unique solution in specific situations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom