Structural stability in a minimization problem and applications to conductivity imaging
Author(s) -
M. Zuhair Nashed,
Alexandru Tamasan
Publication year - 2011
Publication title -
inverse problems and imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.755
H-Index - 40
eISSN - 1930-8345
pISSN - 1930-8337
DOI - 10.3934/ipi.2011.5.219
Subject(s) - nabla symbol , omega , sobolev space , mathematics , banach space , smoothness , space (punctuation) , stability (learning theory) , degenerate energy levels , combinatorics , mathematical analysis , physics , computer science , quantum mechanics , machine learning , operating system
We consider the problem of minimizing the functional $\int_\Omega a|\nabla u|dx$, with $u$ in some appropriate Banach space and prescribed trace $f$ on the boundary. For $a\in L^2(\Omega)$ and $u$ in the sample space $H^1(\Omega)$, this problem appeared recently in imaging the electrical conductivity of a body when some interior data are available. When $a\in C(\Omega)\cap L^\infty(\Omega)$, the functional has a natural interpretation, which suggests that one should consider the minimization problem in the sample space $BV(\Omega)$. We show the stability of the minimum value with respect to $a$, in a neighborhood of a particular coefficient. In both cases the method of proof provides some convergent minimizing procedures. We also consider the minimization problem for the non-degenerate functional $\int_\Omega a\max\{|\nabla u|,\delta\}dx$, for some $\delta>0$, and prove a stability result. Again, the method of proof constructs a minimizing sequence and we identify sufficient conditions for convergence. We apply the last result to the conductivity problem and show that, under an a posteriori smoothness condition, the method recovers the unknown conductivity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom