z-logo
open-access-imgOpen Access
A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data
Author(s) -
Yunmei Chen,
Xiaojing Ye,
Feng Huang
Publication year - 2010
Publication title -
inverse problems and imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.755
H-Index - 40
eISSN - 1930-8345
pISSN - 1930-8337
DOI - 10.3934/ipi.2010.4.223
Subject(s) - robustness (evolution) , computer science , algorithm , compressed sensing , estimator , data consistency , iterative reconstruction , synthetic data , artificial intelligence , mathematical optimization , mathematics , statistics , biochemistry , chemistry , gene , operating system
The aim of this work is to improve the accuracy, robustness and efficiency of the compressed sensing reconstruction technique in magnetic resonance imaging. We propose a novel variational model that enforces the sparsity of the underlying image in terms of its spatial finite differences and representation with respect to a dictionary. The dictionary is trained using prior information to improve accuracy in reconstruction. In the meantime the proposed model enforces the consistency of the underlying image with acquired data by using the maximum likelihood estimator of the reconstruction error in partial $k$-space to improve the robustness to parameter selection. Moreover, a simple and fast numerical scheme is provided to solve this model. The experimental results on both synthetic and in vivo data indicate the improvement of the proposed model in preservation of fine structures, flexibility of parameter decision, and reduction of computational cost.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom