z-logo
open-access-imgOpen Access
Two-phase approach for deblurring images corrupted by impulse plus gaussian noise
Author(s) -
JianFeng Cai,
Raymond H. Chan,
Mila Nikolova
Publication year - 2008
Publication title -
inverse problems and imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.755
H-Index - 40
eISSN - 1930-8345
pISSN - 1930-8337
DOI - 10.3934/ipi.2008.2.187
Subject(s) - deblurring , outlier , impulse noise , computer science , gaussian noise , fidelity , pixel , image restoration , artificial intelligence , impulse (physics) , algorithm , noise (video) , gaussian , pattern recognition (psychology) , image (mathematics) , image processing , physics , quantum mechanics , telecommunications
The restoration of blurred images corrupted with impulse noise is a difficult problem which has been considered in a series of recent papers. These papers tackle the problem by using variational methods involving an L1-shaped data-fidelity term. Because of this term, the relevant methods exhibit systematic errors at the corrupted pixel locations and require a cumbersome optimization stage. In this work we propose and justify a much simpler alternative approach which overcomes the above-mentioned systematic errors and leads to much better results. Following a theoretical derivation based on a simple model, we decouple the problem into two phases. First, we identify the outlier candidates---the pixels that are likely to be corrupted by the impulse noise, and we remove them from our data set. In a second phase, the image is deblurred and denoised simultaneously using essentially the outlier-free data. The resultant optimization stage is much simpler in comparison with the current full variational methods and the outlier contamination is more accurately corrected. The experiments show that we obtain a 2 to 6 dB improvement in PSNR. We emphasize that our method can be adapted to deblur images corrupted with mixed impulse plus Gaussian noise, and hence it can address a much wider class of practical problems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom