z-logo
open-access-imgOpen Access
Initial boundary value problem for a inhomogeneous pseudo-parabolic equation
Author(s) -
Jun Zhou
Publication year - 2020
Publication title -
electronic research archive
Language(s) - English
Resource type - Journals
ISSN - 2688-1594
DOI - 10.3934/era.2020005
Subject(s) - mathematics , sobolev space , bounded function , mathematical analysis
This paper deals with the global existence and blow-up of solutions to a inhomogeneous pseudo-parabolic equation with initial value \begin{document}$ u_0 $\end{document} in the Sobolev space \begin{document}$ H_0^1( \Omega) $\end{document} , where \begin{document}$ \Omega\subset \mathbb{R}^n $\end{document} ( \begin{document}$ n\geq1 $\end{document} is an integer) is a bounded domain. By using the mountain-pass level \begin{document}$ d $\end{document} (see (14)), the energy functional \begin{document}$ J $\end{document} (see (12)) and Nehari function \begin{document}$ I $\end{document} (see (13)), we decompose the space \begin{document}$ H_0^1( \Omega) $\end{document} into five parts, and in each part, we show the solutions exist globally or blow up in finite time. Furthermore, we study the decay rates for the global solutions and lifespan (i.e., the upper bound of blow-up time) of the blow-up solutions. Moreover, we give a blow-up result which does not depend on \begin{document}$ d $\end{document} . By using this theorem, we prove the solution can blow up at arbitrary energy level, i.e. for any \begin{document}$ M\in \mathbb{R} $\end{document} , there exists \begin{document}$ u_0\in H_0^1( \Omega) $\end{document} satisfying \begin{document}$ J(u_0) = M $\end{document} such that the corresponding solution blows up in finite time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom