Well-posedness for degenerate Schrödinger equations
Author(s) -
Massimo Cicognani,
Michael Reissig
Publication year - 2014
Publication title -
evolution equations and control theory
Language(s) - English
Resource type - Journals
eISSN - 2163-2480
pISSN - 2163-2472
DOI - 10.3934/eect.2014.3.15
Subject(s) - sobolev space , degenerate energy levels , degeneracy (biology) , mathematical physics , order (exchange) , initial value problem , physics , mathematics , schrödinger equation , type (biology) , pure mathematics , mathematical analysis , quantum mechanics , bioinformatics , ecology , finance , economics , biology
We consider the initial value problem for Schrodinger type equations $$\frac{1}{i}\partial_tu-a(t)\Delta_xu+\sum_{j=1}^nb_j(t,x)\partial_{x_j}u=0$$ with $a(t)$ vanishing of finite order at $t=0$ proving the well-posedness in Sobolev and Gevrey spaces according to the behavior of the real parts $\Re b_j(t,x)$ as $t\to0$ and $|x|\to\infty$. Moreover, we discuss the application of our approach to the case of a general degeneracy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom