z-logo
open-access-imgOpen Access
A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion
Author(s) -
PierreÉtienne Druet
Publication year - 2020
Publication title -
discrete and continuous dynamical systems - s
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 34
eISSN - 1937-1632
pISSN - 1937-1179
DOI - 10.3934/dcdss.2020458
Subject(s) - compressibility , mathematics , diffusion , isothermal process , ideal (ethics) , ideal gas , thermodynamics , limit (mathematics) , constant (computer programming) , fick's laws of diffusion , mathematical physics , mathematical analysis , physics , computer science , programming language , philosophy , epistemology
After the pioneering work by Giovangigli on mathematics of multicomponent flows, several attempts were made to introduce global weak solutions for the PDEs describing the dynamics of fluid mixtures. While the incompressible case with constant density was enlighted well enough due to results by Chen and Jungel (isothermal case), or Marion and Temam, some open questions remain for the weak solution theory of gas mixtures with their corresponding equations of mixed parabolic-hyperbolic type. For instance, Mucha, Pokorny and Zatorska showed the possibility to stabilise the hyperbolic component by means of the Bresch-Desjardins technique and a regularisation of pressure preventing vacuum. The result by Dreyer, Druet, Gajewski and Guhlke avoids ex machina stabilisations, but the mathematical assumption that the Onsager matrix is uniformly positive on certain subspaces leads, in the dilute limit, to infinite diffusion velocities which are not compatible with the Maxwell-Stefan form of diffusion fluxes. In this paper, we prove the existence of global weak solutions for isothermal and ideal compressible mixtures with natural diffusion. The main new tool is an asymptotic condition imposed at low pressure on the binary Maxwell-Stefan diffusivities, which compensates possibly extreme behaviour of weak solutions in the rarefied regime.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom