z-logo
open-access-imgOpen Access
The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions
Author(s) -
Jens Holger Lorenz,
Wilberclay G. Melo,
Natã Firmino Rocha
Publication year - 2019
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2018332
Subject(s) - uniqueness , combinatorics , sigma , mathematics , physics , algebra over a field , mathematical analysis , pure mathematics , quantum mechanics
This work establishes local existence and uniqueness as well as blow-up criteria for solutions \begin{document}$ (u,b)(x,t) $\end{document} of the Magneto–Hydrodynamic equations in Sobolev–Gevrey spaces \begin{document}$ \dot{H}^s_{a,\sigma}(\mathbb{R}^3) $\end{document} . More precisely, we prove that there is a time \begin{document}$ T>0 $\end{document} such that \begin{document}$ (u,b)\in C([0,T];\dot{H}_{a,\sigma}^s(\mathbb{R}^3)) $\end{document} for \begin{document}$ a>0, \sigma\geq1 $\end{document} and \begin{document}$ \frac{1}{2} . If the maximal time interval of existence is finite, \begin{document}$ 0\leq t , then the blow–up inequality \begin{document}$ \frac{C_1\exp\{C_2(T^*-t)^{-\frac{1}{3\sigma}}\}\;\;\;\;\;\;\;}{\;\;\;\;(T^*-t)^{q}\;\;\;\;} \;\;\;\;\;\;\;\;\;\;\leq \|(u,b)(t)\|_{\dot{H}_{a,\sigma}^s(\mathbb{R}^3)} \quad \mbox{with}\,\, q = {\frac{2(s\sigma+\sigma_0)+1}{6\sigma}} $\end{document} holds for \begin{document}$ 0\leq t , \begin{document}$ a>0 $\end{document} , \begin{document}$ \sigma> 1 $\end{document} ( \begin{document}$ 2\sigma_0 $\end{document} is the integer part of \begin{document}$ 2\sigma $\end{document} ).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom