Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type
Author(s) -
Benjamin Ambrosio,
M. A. Aziz-Alaoui,
Van Long Em Phan
Publication year - 2018
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2018077
Subject(s) - attractor , reaction–diffusion system , diffusion , type (biology) , focus (optics) , class (philosophy) , mathematics , statistical physics , pure mathematics , computer science , mathematical analysis , physics , thermodynamics , artificial intelligence , geology , paleontology , optics
We focus on the long time behavior of complex networks of reaction-diffusion systems. We prove the existence of the global attractor and the $L^{∞}$-bound for networks of $n$ reaction-diffusion systems that belong to a class that generalizes the FitzHugh-Nagumo reaction-diffusion equations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom