Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming
Author(s) -
Sigurður Hafstein,
Skuli Gudmundsson,
Peter Giesl,
Enrico Scalas
Publication year - 2018
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2018049
Subject(s) - lyapunov function , mathematics , parameterized complexity , lyapunov equation , function (biology) , constant (computer programming) , stochastic differential equation , zero (linguistics) , least squares function approximation , differential equation , matrix (chemical analysis) , explained sum of squares , mathematical analysis , combinatorics , nonlinear system , physics , computer science , statistics , quantum mechanics , evolutionary biology , estimator , biology , linguistics , philosophy , materials science , composite material , programming language
We study the global asymptotic stability in probability of the zero solution of linear stochastic differential equations with constant coefficients. We develop a sum-of-squares program that verifies whether a parameterized candidate Lyapunov function is in fact a global Lyapunov function for such a system. Our class of candidate Lyapunov functions are naturally adapted to the problem. We consider functions of the form \begin{document} $V(\mathbf{x}) = \|\mathbf{x}\|_Q^p: = (\mathbf{x}^\top Q\mathbf{x})^{\frac{p}{2}}$ \end{document} , where the parameters are the positive definite matrix \begin{document} $Q$ \end{document} and the number \begin{document} $p>0$ \end{document} . We give several examples of our proposed method and show how it improves previous results.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom