z-logo
open-access-imgOpen Access
Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions
Author(s) -
HaiYang Jin,
Tian Xiang
Publication year - 2017
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2017197
Subject(s) - nabla symbol , bounded function , domain (mathematical analysis) , neumann boundary condition , homogeneous , combinatorics , boundary (topology) , physics , mathematical physics , mathematical analysis , mathematics , quantum mechanics , omega
We consider the following attraction-repulsion Keller-Segel system: \begin{document}$\begin{equation*}\begin{cases}u_t=\nabla· (D(u) \nabla u)-χ\nabla·( u\nabla v)+ξ\nabla·( u\nabla w), x'>with homogeneous Neumann boundary conditions in a bounded domain $Ω\subset \mathbb{R}^n(n>2)$ with smooth boundary. Here all the parameters \begin{document}$χ, ξ, α, β, γ$\end{document} and \begin{document} $δ$\end{document} are positive. The smooth diffusion \begin{document}$D(u)$\end{document} satisfies \begin{document}$D(u)≥ d u^θ, u>0$\end{document} for some \begin{document}$d>0, θ∈\mathbb{R}$\end{document} . It is recently known from [ 25 ] that boundedness of solutions is ensured whenever \begin{document}$θ>1-\frac{2}{n}$\end{document} . Here, it is shown, if repulsion dominates or cancels attraction in the sense either \begin{document}$\{ξγ> χα\}$\end{document} or \begin{document}$\{ξγ=χα, β≥ δ\}$\end{document} , the corresponding initial-boundary value problem possesses a unique global classical solution which is uniformly-in-time bounded for large initial data provided \begin{document}$θ>1-\frac{4}{n+2}$\end{document} . In this way, the range of \begin{document}$θ>1-\frac{2}{n}$\end{document} of boundedness is enlarged and thus the repulsion effect on boundedness is exhibited.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom