Convergence to equilibrium of a multiscale model for suspensions
Author(s) -
Éric Cancès,
Claude Le Bris
Publication year - 2006
Publication title -
discrete and continuous dynamical systems - b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 53
eISSN - 1553-524X
pISSN - 1531-3492
DOI - 10.3934/dcdsb.2006.6.449
Subject(s) - convergence (economics) , statistical physics , rheology , nonlinear system , limit (mathematics) , kinetic energy , conservation law , entropy (arrow of time) , mathematics , physics , classical mechanics , mathematical analysis , thermodynamics , quantum mechanics , economics , economic growth
We consider a multiscale model describing the flow of a concentrated suspension. The model couples the macroscopic equation of conservation of momentum with a nonlinear nonlocal kinetic equation describing at the microscopic level the rheological behaviour of the fluid. We study the long-time limit of the time-dependent solution. For this purpose, we use the entropy method to prove the convergence to equilibrium of the kinetic equation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom