On fractional nonlinear Schrödinger equation with combined power-type nonlinearities
Author(s) -
Van Duong Dinh,
Binhua Feng
Publication year - 2019
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2019188
Subject(s) - physics , mathematical physics , nonlinear schrödinger equation , nonlinear system , type (biology) , supercritical fluid , critical mass (sociodynamics) , schrödinger equation , mathematical analysis , mathematics , quantum mechanics , thermodynamics , ecology , biology , social science , sociology
We undertake a comprehensive study for the fractional nonlinear Schrodinger equation \begin{document}$ i\partial_t u - (-\Delta)^s u = \mu_1 |u|^{\alpha_1} u + \mu_2 |u|^{\alpha_2} u, \quad u(0) = u_0, $\end{document} where \begin{document}$ \frac{d}{2d-1} \leq s , \begin{document}$ 0 . Firstly, we establish the local and global well-posedness results for non-radial and radial \begin{document}$ H^s $\end{document} initial data, radial \begin{document}$ \dot{H}^{s_c}\cap \dot{H}^s $\end{document} initial data, where \begin{document}$ s_c = \frac{d}{2}-\frac{2s}{\alpha_2} $\end{document} . Secondly, we study the asymptotic behavior of global radial \begin{document}$ H^s $\end{document} solutions. Of particular interest is the \begin{document}$ L^2 $\end{document} -critical case and the results in this case are conditional on a conjectured global existence and spacetime estimate for the \begin{document}$ L^2 $\end{document} -critical fractional nonlinear Schrodinger equation. Thirdly, we obtain sufficient conditions about existence of blow-up radial \begin{document}$ \dot{H}^{s_c} \cap \dot{H}^s $\end{document} solutions, and derive the sharp threshold mass of blow-up and global existence for this equation with \begin{document}$ L^2 $\end{document} -critical and \begin{document}$ L^2 $\end{document} -subcritical nonlinearities. Finally, we obtain the dynamical behaviour of blow-up solutions in both \begin{document}$ L^2 $\end{document} -critical and \begin{document}$ L^2 $\end{document} -supercritical cases, including mass-concentration and limiting profile.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom