z-logo
open-access-imgOpen Access
Boundedness and large time behavior in a two-dimensional Keller-Segel-Navier-Stokes system with signal-dependent diffusion and sensitivity
Author(s) -
HaiYang Jin
Publication year - 2018
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2018155
Subject(s) - nabla symbol , sensitivity (control systems) , bounded function , physics , combinatorics , homogeneous , neumann boundary condition , boundary (topology) , domain (mathematical analysis) , function (biology) , mathematical analysis , mathematics , quantum mechanics , electronic engineering , evolutionary biology , engineering , omega , biology
This paper is concerned with the following Keller-Segel-Navier-Stokes system with signal-dependent diffusion and sensitivity \begin{document}$\begin{cases}\tag{*}n_t+u·\nabla n = \nabla ·(d(c)\nabla n)-\nabla ·(χ (c) n\nabla c)+a n-bn^2, x'>in a bounded smooth domain \begin{document}$Ω\subset \mathbb{R}^2$\end{document} with homogeneous Neumann boundary conditions, where \begin{document}$a≥0$\end{document} and \begin{document}$b>0$\end{document} are constants, and the functions \begin{document}$d(c)$\end{document} and \begin{document}$χ(c)$\end{document} satisfy the following assumptions: ● \begin{document}$(d(c), χ (c))∈ [C^2([0, ∞))]^2$\end{document} with \begin{document}$d(c), χ(c)>0$\end{document} for all \begin{document}$c≥0$\end{document} , \begin{document}$d'(c) and \begin{document}$\lim\limits_{c\to∞}d(c) = 0$\end{document} . ● \begin{document}$\lim\limits_{c\to∞} \frac{χ (c)}{d(c)}$\end{document} and \begin{document}$\lim\limits_{c\to∞}\frac{d'(c)}{d(c)}$\end{document} exist. The difficulty in analysis of system (*) is the possible degeneracy of diffusion due to the condition \begin{document}$\lim\limits_{c\to∞}d(c) = 0$\end{document} . In this paper, we will use function \begin{document}$d(c)$\end{document} as weight function and employ the method of energy estimate to establish the global existence of classical solutions of (*) with uniform-in-time bound. Furthermore, by constructing a Lyapunov functional, we show that the global classical solution \begin{document}$(n, c, u)$\end{document} will converge to the constant state \begin{document}$(\frac{a}{b}, \frac{a}{b}, 0)$\end{document} if \begin{document}$b>\frac{K_0}{16}$\end{document} with \begin{document}$K_0 = \max\limits_{0≤c ≤∞}\frac{|χ(c)|^2}{d(c)}$\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom